Maximum penalized likelihood estimation in a gamma-frailty model.
نویسندگان
چکیده
The shared frailty models allow for unobserved heterogeneity or for statistical dependence between observed survival data. The most commonly used estimation procedure in frailty models is the EM algorithm, but this approach yields a discrete estimator of the distribution and consequently does not allow direct estimation of the hazard function. We show how maximum penalized likelihood estimation can be applied to nonparametric estimation of a continuous hazard function in a shared gamma-frailty model withright-censored and left-truncated data. We examine the problem of obtaining variance estimators for regression coefficients, the frailty parameter and baseline hazard functions. Some simulations for the proposed estimation procedure are presented. A prospective cohort (Paquid) with grouped survival data serves to illustrate the method which was used to analyze the relationship between environmental factors and the risk of dementia.
منابع مشابه
Penalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملFRAILTYPACK: An R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation
Frailty models are very useful for analysing correlated survival data, when observations are clustered into groups or for recurrent events. The aim of this article is to present the new version of an R package called frailtypack. This package allows to fit Cox models and four types of frailty models (shared, nested, joint, additive) that could be useful for several issues within biomedical rese...
متن کاملGamma frailty transformation models for multivariate survival times.
We propose a class of transformation models for multivariate failure times. The class of transformation models generalize the usual gamma frailty model and yields a marginally linear transformation model for each failure time. Nonparametric maximum likelihood estimation is used for inference. The maximum likelihood estimators for the regression coefficients are shown to be consistent and asympt...
متن کاملOn the Uniform Frailty Model with Penalized Likelihood and Clustered Data
In the field of survival analysis, when heterogeneity is suspected across study subjects, a model that can account for that variability is preferred. Moreover, an important and challenging task in that field is to efficiently select a subset of significant variables upon which the hazard function depends. To this end, frailty models along with the penalized likelihood methodology can be applied...
متن کاملJoint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events.
The observation of repeated events for subjects in cohort studies could be terminated by loss to follow-up, end of study, or a major failure event such as death. In this context, the major failure event could be correlated with recurrent events, and the usual assumption of noninformative censoring of the recurrent event process by death, required by most statistical analyses, can be violated. R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lifetime data analysis
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2003